
is
disputed

by

is
disputed

by

is
disputed

by

is supported by

is supported by

is supported by

is supported by

In Either Case

M is consistent,

in which case

by Gödel's theorem there
will be a sentence that
humans recognize as true
but that M cannot prove.
So, we can do something
that the machine M can't.

M is not consistent,

in which case

M cannot be a mind
because minds must be
consistent systems.

The machine cannot be a mind.

60 John Lucas, 1961
The mechanist's
dilemma. The
Lucas argument can
be restated as a
dilemma about
consistency. Consider
some arbitrary
machine M.
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Does Gödel's theorem show that
machines can't be conscious?

20 Judson Webb, 1968
Machines don't need new parts to incorporate
Gödelization.  Universal Turing machines don't need new
parts to incorporate a Gödelizing operator. All they require is
to be refocused on different sets of theorems.
Note: Webb discusses the inclusion of new Gödel sentences
rather than "Gödelizing operators," but the point is essentially
the same.

21 Judson Webb, 1968
Lucas's interpretation allows for conscious machines.  If Lucas's
interpretation of the relationship between consciousness and Gödel's theorem
is correct, then machines can be conscious after all. All that is required is that:
• They are given the ability to generate their own Gödel sentences.
• They can answer questions about those Gödel sentences.
•  Gödel sentences are really self-referential (which they aren't, but which is
    granted for the sake of argument).

22 John Lucas, 1971
Machines aren't self-critical.
Webb focuses on Gödel
sentences as a criterion of
consciousness.  But
consciousness should be
construed in terms of the ability
for self-critical thinking.
Self-critical thinking requires a
concept of truth.  Because
machines lack an adequate
concept of truth, as Webb admits,
they can't think critically in the
way that humans can. A
machine's inability to recognize
the truth of Gödel sentences is
just a symptom of its inability to
think self-critically.

17 John Lucas, 1961
Gödel's theorem shows that machines
can't be fully conscious. For a machine to
understand its own Gödel sentence it would have
to be supplied with a consciousness-producing
part (e.g., a "Gödelizing operator"). This
requirement means that machines can have partial
consciousness at best.  Humans, by contrast,
have full reflective consciousness; they can
reflect on themselves as a whole without relying
on a special part.

Can improved machines
beat the Lucas
argument?

38 Frank H. George, 1962
Some AI systems are inductive and probabilistic. The Gödel
argument correctly shows that there are limits on deductive machines.
But, artificial intelligence deals with inductive and probabilistic
mechanisms that Gödel's theorem does not apply to.

34 Anticipated by John Lucas, 1961
Inductive machines may be
immune to Gödelization. Inductive
thinking, which humans can do, would
allow computers to understand their own
Gödel sentences.

33
Improved machines. A beefed-up machine can recognize
the truth of the Gödel sentence.  Such a machine defeats
Lucas's argument, because it shows that a formal system
can evade Lucas's Gödelizing ability.

43 John Lucas, 1961
A machine complex enough
to be un-Gödelizable will not
be a machine. By definition,
machines behave in a determinate
manner according to definite rules.
But, any such determinate
machine is susceptible to the
Gödelization procedure because
its behavior can be formalized.
Thus, by the definition of a
machine, any machine that cannot
be Gödelized is not really a
machine at all.

42 Anticipated by John Lucas, 1961
A highly complex machine may not be Gödelizable. A qualitative difference in the way
computers think may be introduced when they have advanced to a high enough degree of
complexity.  Such a highly complex machine may recognize the truth of its own Gödel sentence.

44 Albert E. Lyngzeidetson, 1990
A connectionist machine may evade Gödelization. A connectionist machine with massively
parallel distributed processing capability may not be susceptible to Gödelization procedures.  Such a
system could in principle reconfigure its own parameters while in the process of computation and thus
arrive at its own semantic metalanguage by inductive means. Once in possession of its own metalanguage,
the connectionist machine would be able to evaluate its own Gödel sentence.

39 J. J. C. Smart, 1961
Ingenuous machines could
evade the Gödel argument.
Machines may have mathematical
insight, if they are properly
programmed to gauge symmetry and
simplicity in patterns of formulae.
Such an "ingenuous machine"
replicates the abilities of human
mathematicians, and so can evade
Gödelization as well as any human
can.

Now that's
symmetrical!

5+7=12
5+9=14

40 Anticipated by J. J. C. Smart, 1961
An ingenuous machine is no better than a moronic machine.
A moronic machine can't extract itself from the Gödel predicament,
even if it is given an infinite amount of time.  Neither can an ingenuous
machine extract itself, because it only works faster than the moronic
machine. An ingenuous machine may display some mathematical
insight (that is, it may be able to see shortcuts to proofs), but it still can't
recognize the truth of its own Gödel sentence.

41 J. J. C. Smart, 1961
A self-reflecting ingenuous machine can't be out-Gödeled. An
ingenuous machine that can ascertain its own syntax can avoid the Gödel
problem. By progressively adding new syntax to its language, an ingenuous
machine could understand any new Gödel sentences that Lucas might
present it with.

35 Anticipated by
C. T. K. Chari, 1963

Self-programming
inductive machines beat
the Lucas argument.
Self-programming inductive
machines have enough
creativity to recognize the
truth of Gödel sentences.

We self-programming
inductive machines
think.

36 C. T. K. Chari, 1963
Self-programming machines are too rigid to replicate human
induction. Self-programming inductive machines only approximate
inductive methods.  Humans use inductive methods that cannot be
formalized. We see this in 2 ways.
1.  Human induction is essentially a creative process that starts with an
     unspecified set of alternatives.  Computers work only with specified
     alternatives.
2. The concept of probability (which is essential to induction) is
     flexible and is determined by the use it is put to.  Machines are
     constrained to use probability only in ways that humans determine
     for them.  Machines cannot fit the concept of probability to new
     situations.

48 Paul Benacerraf, 1967
Informal proof. A machine
could, in principle, construct
an informal proof of the truth
of the Gödel sentence.  So
long as the machine does not
regard such informal
persuasions as proof proper,
introducing them into its
system will not lead to
inconsistency.  So, a
self-referential machine may
recognize the truth of its own
Gödel sentence without using
a Gödelizing operator.

G

45
Self-referential
machines. A self-
referential machine can
evaluate Gödel
sentences for itself.
Such a machine may
evade the Lucas
argument.

49 John Lucas,
     1988
A machine is
not capable of
informal proof
in the human
sense. No matter
how informal a
machine's reasoning
may appear to be, it
must still be
grounded in a formal
system.  So the
machine's informal
"proofs" are also
formalizable, and
thus subject to the
Gödel procedure.

26 Adina Roskies, 1990
Penrose's intuitions are irrelevant. The fact that we can't see how algorithms could cause subjective states is
irrelevant. We can't see how (following Penrose) quantum wave packets could cause subjective states either. The
same problem arises with any physical explanation of subjective states.  Not being able to see an explanation doesn't
mean that the explanation is incorrect.

Other Lucas arguments

76 John Lucas, 1988
Benacerraf's argument is inconsistent.
Benacerraf argues inconsistently to his
conclusion that I am a Turing machine but
cannot prove which one.  He says that for each
program it can be demonstrated that the program
does not represent me, but that still I might be
represented by some program.  But Benacerraf
cannot consistently claim that no particular
program represents me and at the same time that
some program represents me.

75 John Lucas, 1988
I can only be sure of not being any
particular machine, if I am not one at all.
Benacerraf errs in casting the argument as a
nondialectical proof sequence. As a result of
this misunderstanding, Benacerraf reaches the
incorrect conclusion that the man is a machine but
just can't tell which machine he is.  But the only
way that I can be sure of not being any particular
machine is by not being one at all.

73 Thomas Tymoczko, 1990
Highly flexible systems aren't
mechanistic.  Dennett presupposes that a
machine that can effectively take the guise of
many different formal systems is a Turing
machine.  But a machine that generates new
programs, treats its machine table as a changing
object, and shifts between programs would
involve many auxiliary devices that cannot be
modeled on a Turing machine. Thus, such a
machine is not a mechanistic model of the mind.

71 J. E. Martin and K. H. Engleman,
     1990
Lucas can believe his Whitely
sentence. The claim that Lucas
cannot believe the Whitely sentence
is incorrect. Lucas can recognize the
Whitely sentence as true, because
there is a point of view from which
he can understand how the sentence
tricks him.  From this point of view
Lucas can appreciate that he can't
assert the sentence—and
consequently he can recognize its
truth. A machine couldn't do this.
Note: Martin and Engleman address
this claim against a modified version
of the Whitely sentence, "Lucas
cannot consistently believe this
sentence," that is credited to Douglas
Hofstadter.

70 Douglas Hofstadter, 1979
Lucas uses a faulty way of
identifying differences. To see
the flaw in Lucas's argument, imagine
a person who thinks his own
superiority follows from the
uniqueness of his point of view.
However, the fact that he can see
things in a way that is different from
everyone else doesn't prove that he is
superior. Anyone could make the
same claim about their own point of
view. The Whitely sentence reveals
this problem of perspective.

81 John Myhill, 1952
Gödel's and Church's theorems are psychological laws.  Gödel's
theorem shows that human creativity will always exceed human capacity to
anticipate that creativity.  Furthermore, the theorems also show that humans
are able to entertain and clearly conceive of ideas that are neither
constructible nor effective.
Note: Myhill's claim is supported by other authors outside of this immediate
debate, for instance, by Paul Weiss (1947) and H. Gelanter in personal
communication with Myhill.

88 Dale Jacquette, 1987
Gödel's theorem shows that machines can't understand language
the way humans can.  Gödel's theorem shows that machines cannot have
natural language understanding.
•  It is required of speakers of natural language that they be able to distinguish
    any sentence from its negation.
• Machines cannot do this for some sentences, as is shown by their inability to
    distinguish the negation of a Gödel sentence from the Gödel sentence itself.

86 Anticipated by J. J. C. Smart, 1961
The argument from Church's theorem. According to Church's
theorem there is no decision procedure for predicate calculus. This
means that there is no computable procedure by which a machine
can decide whether a given sentence in predicate calculus is true
or false. Human mathematicians, on the other hand, often decide
the truth or falsity of sentences of predicate calculus.  Moreover,
human mathematicians decide such questions by constructing
proofs in a reasonable amount of time and not just at random.

Do mathematical
theorems like Gödel's
show that computers
are intrinsically
limited?

79 Alan Turing, 1950
A human cannot simultaneously beat all machines. Theorems like
Church's, Gödel's, and Turing's show only that a human can beat one machine
on a given occasion.  But there is no reason to believe that a human can
out-think all machines.  Just because we can think of questions that one machine
can't answer, that does not mean that there might not be other machines that will
perform better.

84 Hilary Putnam, 1960
Proof of human superiority depends on proof of consistency. Newman
and Nagel's thesis results from a misapplication of Gödel's theorem. Although it
is true (as Newman and Nagel claim) that a machine cannot prove some undecidable
propositions, a human can't prove those propositions either, unless he or she can
first prove that the machine is consistent.  But it is unlikely that a human would
be able to carry out such a consistency proof unless the machine were very simple.
Note: Also, see the "Is the use of consistency in the Lucas argument problematic?"
arguments on this map.

83 Albert E. Lyngzeidetson and Martin K. Solomon, 1994
Open proof systems are not affected by Gödelian arguments.
 Gödel's theorem implies a sharp distinction between open and closed
proof systems.  Open proof systems continuously interact with their
environment through a steady stream of inputs. An open proof system is,
in fact, a potentially infinite set of proof systems, and at the limit thus has
the potential to be noncomputable.  Because they are potentially
noncomputable, open proof systems are immune to Gödelian arguments,
and may turn out to be as creative and insightful as humans are.

95 Selmer Bringsjord, 1992
Nonintelligent procedures can be noncomputable. There are
possible procedures that don't require intelligence to carry out, yet that
are noncomputable.  Imagine that some part of the brain receives
electrochemical pulses, and emits pulses in such a way as to
instantiate the busy beaver function. The noncomputability of the
busy beaver function shows that some physiological procedures may
not be computable.

99 David Cole, 1992, as articulated by Selmer Bringsjord,
     1992
Brains are automata, therefore persons are too.
Because neurons have computable transfer functions, they
are a kind of automata. And because brains are collections
of neurons, they must be automata as well. Our brains are
what make us what we are, so persons are automata.
Note: Also, see the "Biological" arguments on Maps 3 and
5.

93 Selmer Bringsjord, 1992
Duplication of behavior does not entail computability
of internal states.  Even if all human functions can be
duplicated by an automaton, this does not entail that the
internal processes that give rise to those functions can also
be duplicated. For example, there is good reason to believe
that deliberation is noncomputable, even though the behaviors
that result from deliberation can be duplicated by an
automaton.

Can automata think?

98 Selmer Bringsjord, 1992
Mathematical language
is lacking. In principle,
human capabilities (doing
arithmetic, etc.) might be
translated exclusively into
recursive functions.  But
this begs the question of
whether such capabilities
can be instantiated by
automata, given that we
currently have no
mathematical terminology
to express such capabilities.

There is at this time no way
to express such capabilities
as writing stories and poems
in a logic-mathematical
language of any sort (p. 101).

Bringsjord

97 Raymond J. Nelson, 1989
Many human behaviors can be described
algorithmically. Humans have many behaviors in
common with computer programs: for example,
stimulus-response reactions, doing arithmetic, planning
itineraries, doing office work, and so forth. These
behaviors can be described algorithmically with
recursive functions. Therefore, it is likely that humans
are automata.

5 Kurt Gödel, 1931
Gödel's second theorem.
As a corollary to Gödel's first
theorem it follows that any
consistent formal system strong
enough to produce arithmetic
cannot prove itself consistent.

Does Gödel's theorem
show that machines
can't think?

Mathematical Claims Related to Gödel's Theorem
Church's thesis: This widely accepted (though unproven) claim states that Turing computability,
general recursiveness, lambda computability, and any other formulation of effective computability
are all equivalent and all adequately describe the intuitive concept of computability.

Church's theorem: First-order predicate logic is undecidable. That is, there is no test to determine
the truth or falsity of any arbitrary statement of predicate logic.

Completeness theorem: First-order predicate logic is complete in the restricted sense that all
of its (true) statements are provable (but all false statements are not necessarily disprovable).
This theorem was first proven by Gödel in 1930.

Tarski's theorem: The concept of truth for arithmetic languages is undefinable. Contemporary
proofs of Gödel's theorem often begin with a proof of Tarski's theorem and then derive Gödel's
theorem as a corollary.

Turing's theorem: The halting problem for Turing machines is undecidable. That is, there is
no single algorithm for Turing machines that allows a machine to halt on an answer to every
problem.

Cantor's diagonal theorem: There is no one-to-one correspondence between the real numbers
and the rational numbers. This theorem shows that there are distinctly different orders of infinity
in mathematics. The diagonalization procedure used by Cantor was later modified by Gödel and
used for the proof  of his incompleteness theorem.

Note:  For further account of these theorems, see Hunter (1973) or Enderton (1972).

9 John Lucas, 1967
Good misunderstands the game.
Good misunderstands the nature of the
game between the mechanist and the
mentalist.
• The game is not played with a
    machine but with the machine's
    designer. The game is about what
    the mechanist can do, not about
    what the machine can do.
• The game is not concerned with
    showing the superiority of humans
    over all machines. All the game
    shows is that for any particular
    machine the mechanist presents, a
    mentalist (who knows Gödel's
    theorem) can show that he or she is
    not that machine.

12 David Lewis, 1969
Lucas must be able to
produce the entire Lucas
arithmetic. Lucas's argument
requires that a person be able to
produce the whole of a "Lucas
arithmetic," which includes all of
the Gödel sentences of all formal
systems powerful enough to
produce arithmetic.  But Lucas
has not shown that it is possible
for humans to have this ability.

11 Daniel Dennett, 1972
There are no mechanists for Lucas to play with. The dialectical game never gets off the ground because there are no mechanists
for Lucas to play with. According to Lucas, mechanists believe that producing true sentences is an activity that can be reduced to
finite features and behaviors.  But no real mechanist holds this finitistic view of intentional action. All that real mechanists demand
is that the mind be deterministic, and for that we do not need to assume that the mind is finite.

54 K. Ammon, 1993
SHUNYATA. The SHUNYATA system has autonomously
developed a diagonalization procedure in its proof of
Gödel's theorem.  It has also been used to formulate an
automatic version of Gödel's proof.

Implemented Model

114 Immanuel Kant, 1790
Mechanism can't support critical philosophy. A proper
treatment of the teleology (i.e., goal-directedness) of natural systems
demands the assumption of a designer with purposes in mind. The
assumption of a designer with moral and aesthetic purposes supports
the possibility of a critical philosophy, that is, a philosophy that allows
us to make value judgments.  Because mechanistic explanations tend
to ignore the assumption of a purposive designer, the mechanistic
philosophy is inadequate to support critical philosophy.
Note: Spinoza is only one of many authors that Kant criticizes with
this kind of argument.

116 René Descartes, 1637
Machines can't meaningfully use signs. Animals can't use
signs as humans do, and animals are essentially machines.  So it is
implausible that any other machine could learn to use signs as
humans do.

121 William Nelson Reinhardt, 1986
Strong mechanism is refuted; weak mechanism is safe.  Strong mechanism holds that the
mind can be entirely explained in mechanistic terms. But strong mechanism either contains mentalistic
concepts (in its explanatory apparatus) or is inconsistent with Gödel's theorem. Weak mechanism, on
the other hand, does not contain mentalistic concepts (because it only explains the concept of mind),
and can be shown (via a lengthy proof) to be consistent with Gödel's theorem.
Note:  For a similar line of argument directed against philosophical behaviorism, see "Philosophical
Behaviorism Is Circular," Map 2, Box 87.

109
Mechanistic biology. A school of
biology that sought to apply physical
laws (e.g., Newton's mechanics) to
biological systems by focusing solely
on proximate causation.
Note: Members of this school include
Julius Sachs, Jacques Loeb, and Ernest
Haeckel. The origins of this school
can be traced back to Descartes.

Is the use of consistency in the
Lucas argument problematic?

58 Anticipated by John Lucas, 1961
Gödel's theorems do not apply to
inconsistent machines.  Gödel's
theorems only apply to a machine if the
machine is consistent.  But, we can
never know for sure whether a given
machine is consistent or not.  So, we
never really know whether Gödel's
theorem applies to a given machine.

63 John Lucas, 1976
There are overriding reasons to regard minds as consistent.
Hutton's argument for the inconsistency of the mind is flawed in a number
of ways.
•  His probabilistic model of the mind is unrealistic.  It holds that we accept

or reject propositions independently of each other. This is not so.
• An inconsistent model of the mind would affirm every proposition, but no

mind would do that.
• We must assume that we are consistent reasoners to be able to start reasoning

at all.

prox • i • mate  cau • sa • tion: Explanation by
proximate causes reveals how the parts of a system
work together and in interaction with parts of the
environment. Scientists and philosophers working in
this framework tend to reject any concern with either
the "ancestor causes" of a system (in the sense of
evolutionary theory) or with the intentions of a
"designer" (in the sense of divine design theory).

18 Judson Webb, 1968
Gödel sentences are not
self-referential.  Gödel sentences don't
have anything to do with consciousness,
because they are not self-referential (as Lucas
claims they are). All that Gödel sentences
refer to is their own Gödel numbers.

24 Daniel Dennett, 1990
Mathematical insight is not the important issue. Even if there is no algorithm for mathematical insight, the lack
of one is not crucial because insight is not important to mathematics.  Problems like Gödel's theorem and the halting
problem can be solved reliably by probabilistic algorithms; whether they are solved by insight or not doesn't matter.
Mathematics is grounded in its reliability, not in any particular kind of insight.

is supported by

Alternative Versions of Gödel's Theorem

Many versions of
Gödel's proof have
been advanced in the
decades since his
original treatment.
Here are some
relatively clear ones,
made by writers
represented on this
map.

There exists an algorithm
that for any recursively
enumerable (r.e.) set of
sentences true in the
natural numbers produces
a true sentence of
arithmetic (a "Gödel
sentence") not in that set
(1990, p. 666; also, see
"Penrose Can't Argue For
His Hypothesis," Box
28).

There is an algorithm that,
given any consistent set of
axioms, will output a
polynomial equation P = 0,
which in fact has no integer
solutions, although this fact
cannot be deduced from the
given axioms (1990, pp.
659–60; also, see "Gödel's
Theorem Is Not Decisive,"
Box 30).

Martin Davis

30 Martin Davis, 1990
Gödel's theorem is not
decisive. The question of whether
thinking is algorithmic cannot be
decided on the basis of Gödel's
theorem.
1.  No mathematical insight is
     necessary to construct Gödel
     sentences.
2.  Mathematical insight is involved
     only in seeing that the system that
     produces the Gödel sentences is
     consistent.
3.  But, insight into consistency is not
     reliable (as is shown by numerous
     historical examples).
4.  Because insight into consistency

is unreliable, we cannot know whether
     Gödel's theorem applies to a given
     system, and so we don't know that
     mathematical insight is non-
     algorithmic.
Note: Also, see the "Is the use of
consistency in the Lucas argument
problematic?" arguments on this map.

31 Roger Penrose, 1990
Insight is essential,
even if fallible.  Just
because insight is
sometimes unreliable,
we should not
conclude that it plays
no essential role in
mathematics.
• Doubts about
    consistency in
    mathematics
    only arise when
    mathematicians use
    systems that go
    beyond ordinary
    mathematics.
• When we do become
    assured of the
    consistency of a

mathematical system,
    it is always because
    of insight.

29 Roger Penrose,
     1990
Glymour and
Kelly are too
strict.  If
Glymour and
Kelly are right,
then it is
impossible to
verify or refute
any scientific
theory.  But in
practice scientific
theories can be
tested.  So it may
be possible to test
for algorithmicity
even if absolute
certainty can't be
obtained.

is
disputed

by

is
disputed

by

61 G. Lee Bowie, 1982
Lucas can't know when his Gödelization
procedure is applicable. For the Lucas argument
to work, Lucas must still be able to tell which machines
are consistent.  But this is mathematically impossible.
Note: For further explanation, see Church's theorem as
discussed in Hunter (1973) or Enderton (1972).

108 Immanuel Kant, 1790
Mechanism is necessary for
scientific understanding.
Science proper is only possible in so
far as we formulate mechanical laws
of nature.  Only such laws provide a
firm mathematical basis for the
construction of theories about the
universe. Nature cannot be understood
conceptually without determinate
mechanistic rules.
Note: Kant both supports and disputes
mechanism, because on the one hand
he thinks that mechanism provides the
proper basis for science, but on the
other hand he thinks that mechanism
can't support critical (i.e., moral and
aesthetic) philosophy. See "Mechanism
Can't Support Critical Philosophy,"
Box 114.

 Proposed Model
50 Douglas Hofstadter, 1995
METACAT. The COPYCAT program (see "COPYCAT," Map 1, Box 77) could, in principle, be developed into
a new program called METACAT.  METACAT would have the reflexive ability to recognize the truth of its own
Gödel sentence, and could thereby evade the Lucas argument.  METACAT would be able to:
•  represent "issues" and "pressures" involved in a problem
•  understand how someone else thought up an analogy that didn't occur to it
•  store episodic memory of past problems it has solved
•  recognize meta-analogies, that is, analogies between different analogies
•  construct puzzles based on a sense of "aesthetics."

is supported by

55 Natarajan Shankar, 1994,
as articulated by Stuart Russel and

      Peter Norvig, 1995
The proof has been formalized into
a program. Using the Boyer-Moore
theorem prover, Gödel's theorem has
been derived from a basic set of axioms
by a computer in basically the same way
that Gödel proved the theorem himself.is supported by

is
disputed

by

47 John Lucas, 1961
A self-Gödelizing
machine can still be
out-Gödeled. A machine
with a Gödelizing operator is
still inadequate. The
Gödelizing operator, to be
programmable, must be
specified by some finite rule.
But in that case, the
Gödelizing operator is itself
formalizable. The resulting
system can then be shown to
contain a formula that is true
but that cannot be proven in
the system.  So, the
Gödelization procedure still
holds against the self-
Gödelizing machine.

Formalization
of the Gödel
operator

G

is supported by

is supported by

is supported by

is
disputed

by

What Is a Machine?
A great many notions of what a machine is are found in the literature. A machine is:

1. Any instantiation of a formal system (Lucas, 1961, p. 44).

2. Anything that can be effectively constructed (George, 1962, p. 63).

3. Anything that operates according to an algorithm (Coder, 1969, p. 235).

4. Anything constructed from "unconnected primordial parts" (Hartmann, 1935, p. 71).

5. Anything equivalent to a Turing machine (various contemporary authors, including
     Searle, 1991, Nelson, 1989, and Benacerraf, 1967).

6. Anything that can be given a purely geometric description (Spinoza, 1674, p. 129).

7. Anything that behaves according to an unambiguous set of instructions that requires
     no imagination to follow (Crossley et al., 1972, p. 32).

8. Any device generating a recursively enumerable set of integers (Webb, 1968, p. 158).

9. Any device that is, in principle, divisible into parts (Lucas, 1961, pp. 56–57).

10. Any system whose behavior can be fully explained in terms of proximate causation
      (Mayr, 1982, pp. 67–70 and 114–16).

11. A system that obeys both principles of physical and chemical causality and
      principles of human functional design (Polanyi and Prosch, 1975, pp. 168–70).

Note: Other notions of what makes a machine are found in the historical literature. See
Descartes, Kant, Newton, and La Mettrie, for example.

89
Automata can think. A finite automaton, like a Turing
machine, can replicate all essential aspects of human
intelligence. Finite automata are completely mathematically
describable. Thus, machine thinking is mathematically
possible.
Note: This region deals with general, mathematical properties
of machines, rather than with the specific architectural
properties dealt with on other maps. Connectionist networks
(see Map 5) and physical symbol systems (see Map 3), for
example, are automata, because they implement effective
processes that are Turing-computable.

I can think
just as well
as they can!

is
disputed

by

23 Roger Penrose, 1990
Mathematical insight is non-algorithmic. Many
problems of mathematics  (e.g., Gödel's incompleteness
problem, the halting problem, etc.) can be understood by
conscious humans but cannot be solved algorithmically.
This shows that mathematical insight is based on conscious
non-algorithmic processes.

The concept of a Turing machine arose in the
context of attempts by mathematicians to specify
precisely what an algorithm was. Alan Turing's
insight was that any algorithm could be carried
out by one of a class of Turing machines. Indeed,
he proved that an algorithmic procedure (or, an
"effective procedure") is just a procedure that
can be implemented by a device that blindly and
deterministically manipulates symbols.  So,
Turing machines precisely define the concept of
an algorithm.

ATuring machine is conceived of as an imaginary
device that manipulates symbols on a tape. The
behavior of a Turing machine is determined by
the state it is in and by the symbol it reads on
the tape. Based on those 2 factors, the machine
will enter a new state, write a symbol on the tape,
move to the right or to the left, or halt.

The table of rules (or "machine table") correlating
these actions with states and symbols exhaustively
specifies a given machine. Based on its machine
table, we can determine exactly what a Turing
machine will do with any given tape.

A "universal Turing machine" is a Turing
machine that can perform all the calculations of
any other Turing machine. To emulate a given
machine, the Universal Turing Machine is
"programmed" with a special tape that fully
describes the emulated machine's  table.

Turing Machines

Immanuel Kant

weak  mech • an • ism:
The concept of mind is
mechanical.

However, the Gödel sentence can be recognized to be
true from outside of the system. This is the aspect of
the proof that later interpreters would focus on in the
context of machine intelligence.

8

2

3

1

4

The Principia Mathematica gave Gödel a way to
translate natural language statements into a
formal system of proof. With this formal system
in hand, Gödel was able prove that all such
systems strong enough to produce arithmetic are
inherently limited. Illustration of the proof begins
with an English version of what will become the
notorious "Gödel sentence."

To that end, each symbol in the formal system is
replaced with a code number.

Those numbers are then used as exponents in a series
of prime numbers that will be multiplied together
into one large Gödel number. This step ensures that
every Gödel number corresponds to one and only
one formula in the formal system of Principia
Mathematica.

Various authors, notably John Lucas and Roger Penrose,
extended the Gödelian insight to computers. They
pointed out that because computers are a kind of formal
system, the same limitations discovered by Gödel in
Principia Mathematica and other formal systems might
apply to computers as well.

In step 2, the sentence is roughly translated into the
formal system of Principia Mathematica. The
formalization shown here is not well-formed (i.e.,
is not "grammatically correct"), and consequently
the system of proof used in Principia Mathematica
cannot be applied to it. To make the sentence truly
self-referential and well-formed we must first develop
a way to make well-formed statements that refer to
themselves.

Note: A variety of simplifications have been used in this sidebar in order to illustrate in a readable way the general idea behind Gödel's extremely complex
proof:
• Gödel does not begin with a non-well-formed formula and then fix it as we have done—this is just a rhetorically useful way to present the proof.
• The Gödel number used for "prov" in step 3 was chosen arbitrarily.  Otherwise the number would be extremely long, because "prov" in Principia
    Mathematica builds on various other concepts and definitions with their own code numbers.
• There is a difference between "prov" and "PROV" that is not discussed: "prov" is a property of sentences in the formal system; "PROV" is a property of
    numerals that represent formulas in the formal system.
• The Gödel sentence does not make reference to itself in the simple way suggested by its informal versions. The numeral for G—and the sentence G
    itself—correspond precisely in that there is a one-to-one coding between them, but they do not have the same "meaning." They are "extensionally
    equivalent" but not "intensionally equivalent."

9

The Steps of Gödel's Proof

5 This number is then represented symbolically, in this
case, by a long string of S's followed by a 0 (where
the number of S's is equal to the Gödel number). The
symbolic "numeral" representation is necessary so
that the Gödel number can be dealt with formally in
Principia Mathematica.

6 This numeral representation for Gödel numbers
allows us to use Principia Mathematica to "talk
about itself."  In particular, we can plug the Gödel
numeral for G back into the formula G itself. This
generates a well-formed Gödel sentence that makes
reference to itself, and that can be assessed using the
proof system of Principia Mathematica.

7 Now we are in a position to show that the Gödel
sentence is neither provable nor disprovable using the
system of Principia Mathematica. To see how the
paradox works, see sidebar, "Self-Referential
Paradoxes," on this map.

Formal
system:
computer

G <—>
~ PROV
( SSS ... S0)

It's so clear from
the outside.  I
can see that G is
not provable, so
the sentence is
true.

I can't decide whether this
Gödel sentence is true or
not.  If it's provable, then
it's not provable.  But if
it's not provable, then it is
provable.  I'm stuck!

It's so clear
from the
outside.  I can
see that G is not
provable, so the
sentence is true.

Formal
system:
Principia
Mathematica

G <—>
~ PROV
( SSS ... S0)

G <—>  ~ PROV (SSSSSSSSSSSSSSSSSSSSSSSSSS ...  SSSSS0)
Gödel
sentence

SSSSSSSSSSSSSSSSSSSSSSSSSS  ...  SSSSS0

Symbolic
representation
of Gödel
numeral

Gödel
numberapprox. 2.255092414 x 10

881
2  x  3  x  5  x  7       x   11  x   13   x   17
11       3         1         999            8           11            9

=

11     3     1     999     8     11      9 Code
numbers

Formalization
of Gödel
sentence in
the formal
system (e.g.,
Principia
Mathematica)

G <—>
~ prov (G)

Sentence in
natural
language"G says it is not provable that G."

25 Jon Doyle, 1990
Mathematical truth may evolve.  Penrose assumes that all mathematicians agree on a shared and immutable notion of
mathematical truth. But a major school of mathematics, intuitionism, holds that mathematical truth evolves instead. If mathematical
truth evolves, then there is no reason to believe that the Gödel sentence generated by a system will still be that system's own Gödel
sentence at the (later) time when the sentence is evaluated.

Näive SetTheory 1902

evolved into

Zermelo-FraenkelSet Theory 1997

is supported by

Does Gödel's theorem
show that
mathematical insight
is non-algorithmic?

Is the Lucas
argument dialectical?

is supported by

85 Thomas Tymoczko, 1990
A machine may be consistent despite lack of proof. To
defeat Newman and Nagel's thesis, Putnam must show that the
consistency of the machine is absolutely undecidable.  But there
are no absolutely undecidable propositions in arithmetic. The
best Putnam can offer is the unlikelihood of being able to show
that the machine in question is consistent.  But the fact that it is
unlikely that we can show that a machine is consistent doesn't
mean that a machine is in fact inconsistent.

is supported by

Clark Glymour
 and Kevin Kelly

is
disputed

by

is
disputed

by

is
disputed

by

Either Or

In Either Case

37 John Lucas, 1961
A dilemma about
inductive
machines. Trying
to evade the
Gödelization problem
by making inductive
machines results in a
dilemma.

An inductive machine is not an adequate model of the mind.

The machine acts at random,

in which case

it will not be able to emulate
human intelligence.

The inductive machine works
according to definite rules,

in which case

it can have a Gödel sentence
constructed for it..

Either Or

In Either Case

The mechanist doesn't know all
consistent machines,

in which case

the mentalist's ability to refute the
mechanist doesn't imply that no
consistent machine can prove as
much as the mentalist can.

The mentalist cannot defeat his mechanist opponent.

15 Hao Wang, 1974
A dilemma about
consistency.
Lucas's dialectical
argument against
mechanism runs into
a problem about how
the mechanist knows
whether or not his
models are consistent.
Note: Also, see the
"Is the use of
consistency in the
Lucas argument
problematic?"
arguments on this
map.

The mechanist knows all
consistent machines,

in which case

the mechanist has a decision
procedure for logic.  But
according to Church's theorem
this is impossible.  So, the
mentalist has no opponent at all.

is supported by

is supported by

16 John Lucas, 1997
The Lucas argument claims less than Wang's dilemma
suggests. We can often tell whether or not a machine is consistent,
and only those that we know to be consistent are adequate candidates
for models of the mind. The mechanist need not know the consistency
of all machines in order to know that the ones he presents to the
mentalist are consistent.

I can't decide whether this
Gödel sentence is true or not.
If it's provable, then it's not
provable.  But if it's not
provable, then it is provable.
I'm stuck!

OUCH!

53 Roger Penrose, 1990
The Gödelian insight is
a slippery character.
The Godelian insight can
attach itself to any system
that has been algorithmically
specified, including an
algorithmic specification
of the Gödelization
procedure.

Hah!  I'm always
one step ahead!

The
Gödelian
insight

Algorithmic
specification

1. G says it is not provable that G.
2. G is the sentence "G is not
     provable."
3. G =  (G is not provable).

Sample (Informal) Gödel Sentences

Are Thinking Computers
Mathematically Possible?

The History and Status of the Debate — Map 7 of 7
An Issue Map™ Publication

7
Start Here

1 Alan Turing, 1950
Yes, machines can
(or will be able to)
think. A computational
system can possess all
important elements of
human thinking or
understanding.

Alan Turing

I believe that at the end
of the century ... one
will be able to speak of
machines thinking
without expecting to be
contradicted.

2
Computer thought is mathematically possible. It is
mathematically possible for a computer to think as well as a
human can. The mathematics of computation contains nothing
to prohibit machines from thinking.

Important Properties of Formal Systems
Consistency
A system is consistent if it is impossible, within the system, to derive both a statement and
its negation. A system is inconsistent if a statement and its negation are both derivable.

In an inconsistent system, every possible statement (of its language) can be derived as a
theorem, because everything can be logically derived from a contradiction.  In a consistent
system, that isn't the case.

Consistency is also referred to as the "correctness" or "soundness" of the system.

Completeness
A complete system will have a derivable theorem to correspond to every true formula in its
language. An incomplete system will not be able to derive some true formula.

Decidability
A system is decidable if every true formula of the system has a proof and every untrue
formula of the system has a disproof. A system is undecidable if there is some statement
that it can neither prove nor disprove.

Note: The properties described here are stated in terms of logical systems; they can also be
stated for formal systems more generally.  For a discussion of formal systems and their
properties, see Smullyan (1961). For further discussion of the properties of logical systems,
see Hunter (1973), Enderton (1972), or Smullyan (1961).

Is mechanistic
philosophy valid?

Context
By the turn of the 20th century a crisis had developed in the foundations of mathematics. The discovery of fundamental paradoxes led to concern about the
basic concepts of math and logic.  In response to those concerns, mathematicians tried to develop more secure foundational systems (see sidebar, "Formal Systems:
An Overview," on this map).

One such system, the Principia Mathematica of Bertrand Russell and Alfred North Whitehead, was widely received and provided a framework for subsequent
work on the foundations of arithmetic, geometry, analysis, and algebra.  Concurrently with Russell and Whitehead, David Hilbert worked on foundational
systems in Germany.  Hilbert's central idea was that the consistency of mathematics could be shown by a system of metamathematics—a system of mathematics
about mathematics.

The work of Kurt Gödel was situated in this context.  He set out to apply the recently developed methods to his own areas of interest, and shortly thereafter
discovered the proof for his famous incompleteness theorems.

Method
Gödel developed a numbering system that allowed him to encode formal metamathematical proofs into numeric expressions. The numeric expressions, or
Gödel numerals, could be recognized and manipulated within the Principia system in the same way that any numerals could be (see sidebar, "The Steps of Gödel's
Proof," on this map). Gödel numerals allowed the Principia—and formal systems generally—to "look at themselves" and say things about themselves. Through this
method, Gödel wanted to find out whether the formal system of Principia Mathematica could prove itself consistent.

He discovered that no such proof exists. There is no way for the Principia to prove itself consistent.  Gödel went further and used his method to prove that no
complete formalization of arithmetic exists at all (see "Gödel's First Theorem," Box 4). As a corollary, he returned to the consistency question and showed
that no consistent formal system of arithmetic could be proved consistent using only its own methods of proof (see "Gödel's Second Theorem," Box 5).

Earlier Precedents
Gödel wasn't the first to suspect that his completeness and consistency results held.  Earlier, Finsler (1926) presented an idea similar to Gödel's but without
showing how to formalize the argument.  Because he did not deal with a specific formal system, Finsler could not present any actual proof of his claim. The
American mathematician Emil Post had also proved a result equivalent to Gödel's, but his work wasn't published.

Suggested Reading
Readable discussions of Gödel's theorem include Hofstadter (1978) and Nagel and Newman (1958).  Smullyan (1987) teaches Gödel's theorem through a series
of puzzles. An introduction with applications to computers is Harel (1987).  For historical context, see Rucker (1987), Davis (1965), Dawson (1984a, 1984b),
and van Heijenoort (1967). This last volume reprints Gödel's original paper.

The Background of Gödel's Proof

is
disputed

by

open  proof  sys • tem: A proof system that continually interacts with its
environment through sensors in such a way that it evolves and incorporates
stronger and stronger rules of inference in its system.

closed proof sys • tem: A proof system that has no interaction with the
external world and so does not evolve any rules of inference other than those
that it started with.

is supported by

105 René Descartes, 1637
Mechanistic philosophy provides the correct
means of investigating the external world.
Animate things (plants, animals, the human body, etc.)
should be explained according to mechanistic principles,
because mechanism shows how bodies interact with
each other and with the world. Such principles allow
the application of physics to complicated phenomena
and leads the way to understanding and knowledge of
those systems.
Note: Descartes both supports and disputes mechanism,
because on the one hand he thinks bodies are
mechanistic, but on the other hand he thinks that minds
aren't mechanistic.
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disputed

by

is
disputed

by

is
disputed

by

120 Gödel's theorem refutes the philosophy of
mechanism. The existence of statements that are
undecidable by formal systems (e.g., Gödel's theorem) shows that mechanism
can't provide a complete explanation of mathematical nature.  So mechanism
must be rejected as a universal theory of science.
Note: Other Gödelian arguments against mechanism are spread throughout this
map. See especially the "Is the Lucas argument dialectical?" arguments on this
map.

110
Vitalism. Vitalism is a school of biology that maintained
that biological organisms are too complicated to understand
using only mechanical principles. Vitalists posit the
existence of a vital force, or elan vital, to explain the
workings of living organisms.
Note: Members of this school include Hans Driesh (20th
century), Claude Bernard, and the German
Naturphilosophen school (including Johann Wolfgang von
Goethe, Johann Herder, Immanuel Kant, and others).

111
Evolutionary biology. The mechanists'
emphasis on proximate causation leads
them to ignore the origins of life forms.
Their demand for mathematical explanation
leads them to underestimate the complexity
of biological systems. To understand
biology we must consider the origins of
species through variation and natural
selection.
Note: Members of this school include
Charles Darwin, Thomas Huxley, and
James Baldwin.  Baldwin (1909) makes
the argument against mechanistic biology
most explicitly.

Charles Darwin

119 Gottfried Leibniz, 1714
The conscious mill thought
experiment.  If we were to walk into
an enlarged machine or mill that could
"think, feel, and have perception,"
nothing witnessed could explain its
conscious qualities, because such
qualities would not be found among the
parts of the mill.
Note: Also, see "A Conscious Machine
Could Not Be Explained By Its Physical
Workings," Map 6, Box 55.

strong  mech • an • ism:
The mind is mechanical.

is
disputed

by
56 R. S. Boyer and

J. S. Moore, 1979
The Boyer-Moore
theorem prover.
A LISP-driven
theorem-proving
engine has been
used to derive many
novel mathematical
results, including
decisions on some
open questions in
mathematics.

Implemented Model

4 Kurt Gödel, 1931
Gödel's first theorem. Gödel's incompleteness theorem shows that any consistent formal
system of axioms and rules of inference, provided it is strong enough to produce arithmetic,
will contain true statements that cannot be proven by the procedures provided in the system.
Note: For a brief account of the proof of this theorem, see sidebar, "The Steps of Gödel's
Proof," on this map.

8 Paul Benacerraf, 1967
The super-mechanist.  Even if Lucas can Gödelize any machine that a mechanist can develop, that ability
doesn't entail that he can Gödelize any machine whatsoever. A suprahuman mechanist might be able to design
a machine that exceeds Lucas's Gödelizing ability.

David Lewis (1969) proposed that the real issue in the Lucas
argument is the form of arithmetic that Lucas uses in discussing
his own mathematical activity.  Lewis dubbed this form of
reasoning the Lucas arithmetic.

Lewis defines this arithmetic as the ordinary Peano arithmetic
with the addition of an infinitary rule of inference.  Peano
arithmetic is a formalization of arithmetic developed by
Guisseppe Peano in the late 19th century. The system
uses a set of 5 axioms to deduce all the truths of ordinary
arithmetic.

In ordinary Peano arithmetic, the consistency of the system
cannot be proven within the system; this would violate Gödel's
second theorem. The addition of an infinitary rule, however,
allows us to infer the consistency of a formal system from
within that system without violating Gödel's second theorem.

When fully worked out, the Lucas arithmetic includes all of the
Gödel sentences of all systems powerful enough to produce
arithmetic. As such, it includes an entire hierarchy of systems
of arithmetic, each of which contains the Gödel sentences for
all of the lower-level systems in the hierarchy.

Note: The method of adding an infinitary inference rule to
Peano arithmetic was developed by Gerhard Gentzen in 1936.

 Lucas Arithmetic

Gödel sentence for
Arithmetic A

Arithmetic C

Gödel sentence for
Arithmetic B

Arithmetic B

Arithmetic A

10 Irving J. Good, 1967
Gödel's theorem is a red herring.  No
matter what game we take Lucas to be playing,
Gödel's theorem is not the real issue.  In fact,
Gödel's theorem is a red herring that distracts
us from the real issue of transfinite counting.
1. We cannot actually know the truth of the
     Gödel formula; we can only believe it based
     on our belief that the formal system is
     consistent (a fact that itself cannot be
     proved without contradicting Gödel's
     second theorem).
2.  Recognizing the first point, we can see that
     it was not the Gödel formula that was at the
     core of Lucas's argument; the real issue was
     transfinite counting.  But Lucas cannot
     prove that he is better at transfinite counting
     than a machine is.

Gödel's theorem

red  her • ring: An argument that
distracts attention from the issue
in question.  Derives from the use
of red herrings (a kind of smoked
fish) to distract tracking dogs from
the trails of escaped prisoners.

6
The argument from Gödel's theorem is dialectical. The Lucas argument involves a hypothetical
game played between Lucas and a mechanist. A mechanist presents Lucas with a machine model of Lucas's
mind. Lucas counters by showing that he can recognize the truth of that machine's Gödel sentence, whereas
the machine can't. In this way, Lucas can defeat any of the mechanist's attempts to reduce him to a machine.

32 Peter Denning, 1990
Algorithms are fixed interpretations.  Humans can use
conscious observation to step outside of an interpretation and
think of alternatives and extensions. Algorithms, however,
are inherently fixed interpretations. Thus, no algorithmic
account of the mind could ever be sufficient; it could never
account for the interpretive flexibility of conscious
observation.

I can always step
outside an
interpretation and
think of extensions
and alternatives.Interpretation

74 Paul Benacerraf, 1967
Lucas doesn't recognize what his
argument really shows.   If we fix up
Lucas's argument so that it is more accurate,
we discover that it proves something
different than Lucas intended. The
corrected argument, it turns out, shows that:
• Lucas may be a Turing machine. So Lucas's
    intended argument—that he is not a
    machine—fails.
• Furthermore, if Lucas is a Turing machine,
    he has no way of knowing which one he
    is.
Note: This argument stimulates a highly
technical thread of debate that is not
represented here because of its length and
complexity. This thread includes papers
from Hanson (1971), Chihara (1972), and
Reinhardt (1986).

72 Daniel Dennett, 1972
Gödel's theorem only limits formal systems, not
their machine implementations. The Gödel sentence
for some formal system only limits a machine while it is
implementing that formal system. But when the machine
is implementing some other formal system, the machine
may be able to prove the previous system's Gödel sentence.
Physical machines, which can implement numerous formal
systems, transcend the limitations that Gödel's theorem
places on specific formal systems.
Notes:
• Dennett presents this ar gument as a special case in his

broader discussion of how a physical object can implement
   various Turing machines.
• Also, see the "Is the brain a computer?" arguments on
   Map 1, the "Can functional states generate
   consciousness?" arguments on Map 6, and sidebar,
   "Formal Systems: An Overview," on this map.

87 J. J. C. Smart, 1961
The ingenuous machine. A
machine that is programmed for
mathematical insight will decide the
truth or falsity of sentences of predicate
calculus in the same way that human
mathematicians do. Such an "ingenious
machine" will not have to rely on strictly
decidable means for making decisions.
Note: Also, see "Ingenuous Machines
Could Evade the Gödel Argument,"
Box 39.

67 David Coder, 1969
Lucas's argument does
not take into account
people who cannot
understand Gödel's
theorem.  Lucas has only
shown that someone who
understands Gödel's theorem
is different from a machine.
But, what about a person who
cannot see the truth of Gödel's
theorem?  Lucas has not
demonstrated that such a
person can outperform a
machine, and so his argument
fails to establish that
machines are essentially
different from humans.

Gödel's
Theorem

?

68 John Lucas,
      1970
A single person's
understanding of
Gödel is enough.
The power of
reasoning
demonstrated by a
single person who
understands Gödel's
theorem is sufficient
to show that minds
are different from
machines.

Gödel's
Theorem

!

28 Clark Glymour and
      Kevin Kelly, 1990
Penrose can't argue for
his hypothesis. No
scientist can either establish
or refute the hypothesis that
mathematical insight is
non-algorithmic/noncomputable
• An empirically decidable
   property must be "a 2
   property in the Borel
   hierarchy."  Computability
   and noncomputability lack
   that property. Therefore,
   the hypothesis that
   mathematical intuition is
   noncomputable is
   empirically undecidable.
•  Penrose's ability to
   recognize mathematical
   truths by insight is
   consistent both with the
   hypothesis that insight is
   algorithmic and with the
   hypothesis that it isn't.
   So, Penrose's intuitions
   fail to establish his
   hypothesis one way or the
   other.

19 John Lucas, 1971
Gödel sentences are self-referential enough for us to
see their truth. Gödel sentences by themselves are not
self-referential, but recognizing their truth requires us to see
them as self-referential.  It is this ability to see Gödel
sentences as self-referential that machines lack, and so
machines can't recognize the truth of Gödel sentences.

13 John Lucas, 1970
We don't need the entire Lucas arithmetic. A mentalist doesn't have
to produce all of the Lucas arithmetic. It is sufficient that he or she produce
enough of the Lucas arithmetic to answer the mechanist at a given step of
the game. The success of the Lucas argument must be evaluated in the
context of a particular machine being challenged by a particular mentalist.

14 David Lewis, 1969
Machines can't produce the entire Lucas arithmetic.  Even though
Lucas can't produce the entire Lucas arithmetic, we can still salvage a weaker
conclusion from his argument, namely, that machines can't produce the entire
Lucas arithmetic either.

7 Irving J. Good, 1967
A machine can play Lucas's game. A
machine programmed to do transfinite counting
could play Lucas's game as well as Lucas can.
Lucas implicitly relies on the fact that transfinite
counting hasn't been formalized.  But the fact
that transfinite counting hasn't been formalized
doesn't show that humans are any better at it
than machines are.
Note: Also, see the "Can improved machines
beat the Lucas argument?" arguments on this
map, and "The Gödelization Procedure Can Be
Algorithmically Specified," Box 52.

trans • fi • nite  num • bers:
Numbers that go beyond the
magnitude of any finite set.

trans • fi • nite  count • ing: A
form of arithmetic that works with
transfinite numbers instead of just
with the finite numbers.

51 Stuart Russel and Peter Norvig, 1995
The Gödelian insight has already been formalized.
Programs have been developed that can derive Gödel's theorems.
The "Gödelian insight" has, in effect, been formalized. Penrose
neglects this possibility because he fails to distinguish between
the formal system within which a Gödel sentence is proven and
the system that does the proving.
Note: This claim was originally articulated as an attack on
Penrose's response to Boolos (see "The Gödelian Insight Is All
That We Need," Box 66). Also, see the "Does Gödel's theorem
show that mathematical insight is non-algorithmic?" arguments
on this map.

is
disputed

by

is
disputed

by

52 Bruce MacLennan, 1990
The Gödelization procedure can be algorithmically specified. The metamathematical
Gödelization process can be formalized.  It is "meta" in the sense  that a formal mathematical
process is being used to reason about a mathematical process.

46 Anticipated by John Lucas, 1961
A machine with a "Gödelizing
operator" can defeat Lucas's
argument. A machine with a
Gödelizing operator can carry out the
Gödel procedure and add all its Gödel
sentences to itself as theorems.  Such a
self-referential machine would recognize
the truth of its Gödel sentence and any
subsequent Gödel sentences that could
be formed about the machine.

G

91 Kurt Gödel, 1951
Minds are not as finite as Turing believes. At any given time, the mind only possesses
a finite number of states, but as time progresses the mind constantly develops. This is shown
by the fact that it is always possible for minds to develop new methods of thought. It is likely
that the total number of possible mental states involved in developing these methods converges
to infinity with time.  But, on the other hand, the total number of possible Turing machine
states will always be finite.
Note: Gödel claims that Turing's argument only becomes valid under the following two
assumptions:
1. There is no mind separate from matter.
2. The brain functions basically like a digital computer.
Gödel believed that the second assumption was true but that the first was "merely a prejudice
of our times" that would eventually be disproved (Wang, 1974, p. 326).

96 Selmer Bringsjord, 1992
The busy beaver function.
1.  Given a natural number n, the busy beaver function outputs a
     series of marks.
2. The output is equal to the maximum number a Turing machine
     with only n states can write on its tape.
3. A Turing machine cannot compute what this maximum number
     of marks is, but a human may be able to determine this.
Note: The busy beaver function was first discussed by Tibor Rado (1962).

103 Selmer Bringsjord, 1992
The Zeus machine. It is possible for infinitely many
states to take place in a finite time period, as proven by the
conceptual possibility of a "Zeus machine." A Zeus machine
is an automaton that works faster and faster with each
computation it performs. For example, in listing all natural
numbers (an infinite list) the first number is listed in 1/2
second, the second number in 1/4 second, the third in 1/16
second, and so on, so that after one second has passed an
infinite list has been compiled.
Note: The mention of a machine that can be in an infinite
number of states in a finite amount of time doesn't contradict
the claim made in Box 101, because a Zeus machine is not
a Turing machine or an automaton, but rather an imaginary
machine designed to prove a conceptual point.

102 Anticipated by Selmer Bringsjord, 1992
A finite time period only allows a finite number of
states. Only processes that require no time at all could occur
infinitely often in a finite period of time. But causal processes
occur in space and time, and hence require at least some time
(however small it may be).  So, it's impossible for infinitely
many causal processes to occur in a finite time period.

100 Selmer Bringsjord, 1992
Persons are not brains. The complete argument that persons are
automata must include a missing third premise:
     1.  Neurons are automata.
     2.  Brains are collections of neurons.
     3.  Persons are brains.
     4. Therefore, persons are automata.
But the third premise, "Persons are brains," is false, so the conclusion
that persons are automata doesn't follow.
Note: Also, see the "Can computers be persons?" arguments on Map 1.

118 Gottfried Leibniz, 1714
Artificial machines can never duplicate
natural machines. The kinds of machines
that humans can construct will never be able
to fully simulate the structure of natural
machines.  In a natural machine each and
every part, no matter how small, is tailored
to the ends of the whole. Artificial machines,
by contrast, always contain some parts that
are not tailored to the ends of the whole.
Thus, an artificial machine will never be as
complex as a living organism. Gottfried Leibniz

115 Immanuel Kant, 1790
The assumption of
design is useful for
science.  Even though the
assumption of a designer is
ultimately dispensable in
science, it still provides a
useful guide for scientific
explanations.  Design
provides standards of
simplicity, continuity, unity,
and organization that have led
to fruitful hypotheses in the
past.

122 Judson Webb, 1968
Gödel's theorem doesn't solve the
constructivity problem.  If Gödel's theorem
really refuted mechanism, it would also show how
to solve the constructivity problem in the foundations
of mathematics.  But Gödel's theorem doesn't show
how to solve that problem.

the  con • struc • tiv • i • ty  prob • lem: The
problem of whether or not the foundations of
mathematics can be formulated purely
constructively, that is, without recourse to
assumptions about a Platonic ontology of abstract
mathematical entities.  If mathematics could be
founded on a purely constructional basis, that would
mean that it can be constructed "mechanistically."

117 Julien Offray de La Mettrie, 1774
Animals and machines can use
signs.  Like humans, animals use
signs.  Songbirds mock each other,
parrots pick up human phrases, apes
could speak if their vocal chords were
different, and so forth.  Differences
between human and animal use of
signs is only a matter of complexity.
Similarly, differences between human
and machine use of signs is also a
matter of complexity. To make
machines like humans, then, all we
have to do is make them more
complex.  Julien de La Mettrie

Do men and even women
make fun of each other better
than do the birds who repeat
the songs of other birds in
such a way as to ridicule
them perfectly? (p. 152)

113 Benedict Spinoza, 1674
Minds are mechanical. The human
mind can be fully explained by
mathematical principles. Because the
laws of nature are the same
everywhere, the same method should
be used to study the mind as is used
to study bodies.  By  providing a
"geometric" theory of emotions and
the mind, human behavior can be
shown to be mechanical in the same
way that physical bodies are.

112 René Descartes, 1637
Mechanistic principles cannot explain
the mind. The soul and mind are not made
of the same kind of substance as external
bodies are, and mechanism cannot explain
their workings.  So, although inanimate
objects, plants, animals, and the bodies of
humans can be understood by applying
physical (mechanistic) laws, the mind of
man needs a completely different kind of
explanation.
Note: Descartes both supports and disputes
mechanism.  On the one hand, he thinks
bodies are mechanistic, but on the other
hand he thinks that minds aren't mechanistic.
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3 John Lucas, 1961
Computers as formal systems are limited by Gödel's incompleteness theorems. Gödel's
theorem is the Achilles heel of mechanism.  Gödel's theorem proves that a computer cannot, in
principle, operate with human understanding. The argument goes as follows:
1. Computing machines are essentially formal systems.
2.  Gödel has shown that there are sentences (Gödel sentences) that cannot be proven within a
     formal system but that humans can see to be true.
3. Therefore, humans can do something that computer's can't do, namely, recognize the truth of
     Gödel sentences.
Note: Lucas credits the following authors with making similar arguments: Turing (1950) (see "A
Human Cannot Simultaneously Beat All Machines," Box 79), Rosenbloom (1950), Nagel and Newman
(1958) (see "Mathematical Thought Cannot Be Fully Formalized," Box 82), and Rogers (1957).

Gödel's Theorem

Here is a mathematical reason
why computers can't think.

is supported by

LucasMechanist

In that case I can
produce a new Gödel
sentence for M2.

You are a machine M.

OK, you are a different
machine, M2.

No, I'm not, because I can see that
the Gödel sentence for M is true.

Not Pdi
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59 John Lucas, 1961
An inconsistent machine cannot model
the mind. Although it is true that Gödel's
theorem does not apply to inconsistent machines,
that doesn't matter because inconsistent machines
can't model the mind. Human minds are geared
for consistency. They seek consistency, and use
it as a norm for judging which beliefs to accept.

104
Natural phenomena are best understood in terms of mechanistic principles.
The human mind, like all natural systems, is mechanical.  Mechanical explanations—like
those employed in physics—provide the only necessary foundation for the rest of the
sciences, including psychology. Through this extension of the method of physics,
mathematics can be brought to bear on psychology and make it a rigorous science.
Note: This region traces the development of mechanistic philosophy from Descartes to the
present.  Strictly speaking, all the claims on these 7 maps deal with mechanism,
because if machines can think then mechanism (in philosophy of mind, at least) is vindicated.
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80 Emil Post, 1941
Mathematics is an essentially creative activity. The
results about incompleteness and undecidability support the
idea that mathematics is essentially creative. These results
also show that it is preferable to have multiple formal systems
rather than a single universal system such as Principia
Mathematica. The role of logic in mathematics is thereby
shown to be one of revealing and developing the limitations
of formal systems, not of revealing what the one true formal
system is.

78 Kurt Gödel, 1951
Machines may eventually have mathematical
intuition. The incompleteness theorems only show that a
machine cannot be proven to possess mathematical
intuition.  But this does not show that machines can't in fact
possess mathematical intuition. To the extent that machines
are limited by Gödel's theorems, humans are too.  Neither
humans nor machines can formulate all of their mathematical
intuitions. It is in the nature of mathematics to be incompletable.
Note: Also, see the "Does Gödel's theorem show that mathematical
insight is non-algorithmic?" arguments on this map.
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101 Selmer Bringsjord, 1992
Humans have an infinite capacity that machines
lack.  Unlike deterministic automata, persons might be in
an infinite number of states within a finite period of time.
Such an infinite capacity could allow persons to make
decisions that machines could never make.
Note: Bringsjord is discussing a possible human
capacity, rather than an actual human capacity.

90 Alan Turing, 1936
Minds and automata have a finite number of
states. At any given time the mind can only possess
a finite number of states.  If the mind could possess
an infinite number of states, some of them would
have to be arbitrarily close together, and thus would
become confused with each other.  So the human
mind does not differ essentially from a finite
automaton.

92 Arthur Burks, 1973
Human functions can be
captured by finite automata. A
finite description of a human being
can be fine-grained enough to
capture all that is essential to its
humanity.  Once such a description
is formulated, a finite automaton
can be constructed to duplicate all
natural human functions.

There is a limit to the
amount of detail
needed for a complete
specification of natural
human functions (p. 56).

Burks
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94 Raymond J. Nelson, 1989
Thinking is a rule-following process. Any psychological
theory must ultimately decompose psychological phenomena
into neural processes that do not require intelligence to implement.
Those neural processes can be characterized by Turing-type rules,
and hence are computable.
Note: Also, see the "Do humans use rules as physical symbol
systems do?" arguments on Map 3, the "Do connectionist networks
follow rules?" arguments on Map 5, and the "Is the relation
between hardware and software similar to that between human
brains and minds?" arguments on Map 3.
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Because of the technical nature of the
arguments on this map, the
mapmakers have had to omit many
claims and simplify many arguments.
Many lines of debate in this field
involve sophisticated mathematical
symbolism that are difficult to
represent in this medium.
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77
Mathematical theorems show that machine thought is limited. Gödel's theorem and other
mathematical theorems like it reveal essential limitations on the project of making machines that think.
Note: This region covers those arguments that don't derive from Lucas or Penrose but that still deal
with Gödelian limitations; that is, with the limitations that Gödel's theorem (and other similar theorems)
impose on machine and/or human intelligence.

27 Roger Penrose, 1990
The absurdity of algorithmic insight. The claim that mathematical
insight is algorithmic can be reduced to absurdity.

Assume

 It follows that

Therefore

There is a knowable algorithm (AI procedure) that generates mathematical
insight.

1.  If we were aware of this algorithm, or of how to generate it, then we would
     have to believe in the soundness of this procedure.
2.  Gödel shows how to construct, for any algorithm for mathematical insight,
     a sentence whose truth follows from the soundness of the algorithm, yet
     which is inaccessible to that same algorithm.
3. We can understand and believe in the Gödel procedure.

There is not a knowable algorithm that generates mathematical insight.

Paul Benacerraf

John Lucas

Selmer Bringsjord

106 Thomas Hobbes, 1650
Human thinking is
computational. Reasoning is
purely a matter of abstract
computation. Thinking is adding
and subtracting, where "adding
and subtracting" is extended to
apply not only to numbers but
also to bodies, proportions,
actions, words, motions,
conceptions, and so on.

Thomas Hobbes

107 Julien Offray de La Mettrie, 1774
Man is a machine. There is no
reason to regard man as anything but a
very complicated mechanism.  Our
own bodies are merely highly
complex machines, and so we can, at
least in principle, make machines that
will recreate our behavior.

Julien de La Mettrie
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57
The problem of consistency. The notion
of consistency involved in Lucas's argument
runs into difficulties for humans and/or
machines.
Note: See "Gödel's Second Theorem," Box 5.
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65 George Boolos, 1990
We do not know that
mathematics is consistent.
Gödel's theorem rests on the
assumption of a consistent
formal theory.  But many
theories in the history of
mathematics have been flawed,
and even today the best theories
are sometimes called into
question. This indicates that we
do not know, but only hope or
believe, that our mathematical
theories are consistent, and this
in turn means that we cannot
"see" with certainty the truth of
the Gödel sentence.
Note: This argument is directed
against Penrose's version of the
argument, rather than Lucas's.

Calculus

Algebra

Topology

Set Theory

64 Douglas Hofstadter, 1978
Inconsistency without explosion of belief.
Lucas's argument depends on the assumption that if
humans were inconsistent, they would be committed
to believing anything and everything.  But this
conclusion follows from a rule of propositional logic
that we have no reason to believe holds for humans.
It is quite possible for minds to be both inconsistent
and coherent.

62 Anthony Hutton, 1976
Belief in one's own consistency leads to inconsistency. The
following argument shows that humans may be inconsistent, and therefore
that we can't be sure that Gödel's theorem can be applied to minds.
1. Probabilistic evidence suggests that we have some contradictory beliefs.
2. Rationality demands that we take this probabilistic evidence seriously.
3. So, rationality demands that we think there is some probability that we

 are inconsistent.
4. So, being certain about one's own consistency (as Lucas claims we can

 be) is inconsistent with rationality.

66 Roger Penrose, 1990
The Gödelian insight is all that we need. It is not necessary to be able to see
the consistency of an entire formal system. The ability to pass from one formal
system to the Gödel sentence of that formal system is enough. This kind of Gödelian
insight, which is not captured by formal rules, is characteristic of mathematical
insight and is non-algorithmic.
Disputed by
"The Gödelian Insight Has Already Been Formalized," Box 51.
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There's no mathematical
reason why computers
can't think.
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Roger Penrose

David Hilbert laid many of the foundations for what are now known as formal systems.
His formalist program aimed to develop axioms that would yield the desired truths of
math and geometry, without reliance on intuition. These axioms would be true regardless
of whether they were interpreted in terms of points, lines, and planes, or in terms of "law,
love, and chimney sweeps."

Formal systems allow mathematical results to be described and assessed with increased
precision, and are particularly useful with theories that deal with more than 3 dimensions.

In a formal system, the whole process of proof is reduced to the manipulation of symbols
according to rules that completely determine the conclusions that can be drawn from a set of
axioms.  Intuitions about the "meaning" of the symbols play no role in the workings of the
formal system.  Such meanings are only introduced with the interpretation of the system.

Below is an example of a simple formal system designed for application to the logic of
truth.  Note that, in addition to the standard interpretation in terms of truth, there are also
other interpretations that satisfy the formal system (for more explanation, see "The Lowenheim-
Skolem Theorem," Map 3, Box 107).

Formal Systems: An Overview

Standard Interpretation Alternative Interpretation

Axioms

Rules

a —> (b —> a)

(~b —> ~a) —> (a—> b)

If sentence a is true,
then if sentence b is also
true, then sentence a is
still true.

If appleness, then orangeness
yields appleness.

If the falsity of b entails
the falsity of a, then the
truth of a entails the truth
of b (contraposition).

If non-orangeness yields
non-appleness, then
appleness yields orangeness.

A —> B
A

B

From the truth of "if A
then B," and from the
truth of A, it follows that
B is also true.

From appleness yielding
orangeness, and from
appleness being present, we
infer that orangeness is also
present.

TRUTH
FALSITY

Notes:
•This formal system is not complete with respect to the logic of truth; that is, it does not yield
   all valid formulas of the logic of truth.  But recall that it does not even make sense to ask
   whether the system in itself is complete or correct; the system in itself is just an orderly set
   of patterns of symbols with rules to govern their recombination.
•For more on formal systems, see Map 4 and the "Can functional states generate consciousness?"
   arguments on Map 6.

Oh, no you don't.

69 C. H. Whitely, 1962
Lucas tricks machines into
contradicting themselves.
Consider the following
Gödelian argument, directed
against John Lucas himself.
Lucas cannot assert that "This
formula cannot be consistently
asserted by Lucas "without
contradicting himself, although
we can see that the statement is
true.  But this argument is
simply a way of tricking Lucas
into contradicting himself.
Similarly, Gödel's theorem
tricks machines into
contradicting themselves.

Ooops!  I just
contradicted myself.

Lucas

This formula cannot be
consistently asserted by Lucas.

Descartes

82 Ernest Nagel and
James R. Newman, 1958

Mathematical thought
cannot be fully
formalized. Gödel's
theorem shows that human
creativity cannot be fully
formalized. The ingenuity
of mathematicians in
devising new methods
cannot be reduced to a
precise logical form.  For
example, it has been shown
that humans, using
"informal"
metamathematical
reasoning, can prove
theorems that cannot be
proven by any formal
means.

As Gödel's own
arguments show, no
antecedent limits can
be placed on the
inventiveness of human
mathematicians in
devising new rules of
proof (p. 99).

Nagel and Newman
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The crux of Gödel's proof is a paradox, similar in form to other historical paradoxes about self-referentiality, including the liar paradox, Russell's
paradox, and Richard's antinomy (not shown; see Richard, 1905).  In each case, a dilemma arises from a self-referential claim.

In the late 1800s Gottlob Frege introduced a system of logic that
seemed capable of providing a consistent basis for mathematics.
In a letter to Frege, Bertrand Russell (1902) introduced a paradox
that undermined Frege's system and inspired a restructuring in the
foundations of mathematics.

Russell's Paradox

To understand Russell's paradox, note that there are some classes
that contain themselves and some that do not.

N
The class N of
non-red things is
itself non-red.
This class contains
itself as a member.

The class M of
all men is not
itself a man.  It
does not contain
itself as a
member.

M

Self-Referential Paradoxes

The liar paradox dates back to the New Testament.
The Liar Paradox

It was a Cretan prophet, one of their own
countrymen, who said, "Cretans are
always liars, vicious brutes, lazy
gluttons"—and he told the truth! (Titus
1:12–13.)

Saint Paul

Gödel's Theorem
Gödel sentences generate a  paradox similar
to the liar's paradox and Russell's paradox,
except from the point of view of a formal
system such as Principia Mathematica.

G <—>
~ prov
(G)

Assume that the liar sentence
is true,

in which case

it is true that "this very
sentence is false."  So, on
this assumption, the sentence
is both true and false.

The liar sentence cannot be pinned down to one truth value.  It
cannot be decided whether it is true or false.

Either Or

In Either Case

Assume that the liar sentence is
false,

in which case

it is false that "this very sentence
is false," and so it is also true.
So, on this assumption, the
sentence is both true and false.

Assume that the class of all
classes that do not contain
themselves does contain
itself,

in which case

that class both does and
doesn't contain itself.

Assume that the class of all
classes that do not contain
themselves doesn't contain itself,

in which case

the class must contain itself
because it is now a member of
the class of all classes that do not
contain themselves. So again, the
class both does and doesn't
contain itself.

The assumption that there is a class of all classes that do not
contain themselves leads to contradiction.

Either Or

In Either Case

Either Or

In Either Case

It is provable that "G is not
provable,"

in which case

G is both provable and not
provable.

It is disprovable that "G is not
provable,"

in which case

we can show that it is not the
case that G is not provable, so
G is provable after all. So, G is
both provable and not provable.

The system can neither prove nor disprove the Gödel sentence
G. It cannot be decided whether G is true or false from the point
of view of the system in which G is represented.

1. This very sentence is false.
2.  Sentence 2 is not true.
3. It is true that this very sentence
     is false.

Sample Liar Sentences

Kurt Gödel

The analogy of this argument
with the Richard antinomy
leaps to the eye. It is closely
related to the "Liar" too. ...
We therefore have before us
a proposition that says about
itself that it is not provable
(in PM) (1931, pp. 89–90).
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